Richard Tolimieri
52 Ashford St.
Allston, MA 02134
July 5, 1996

Dr. Jon Sjogren

Program Manager

Communications and Statistical Research
AFOSR

110 Duncan Ave. Suite B115

AFOSR/NM Bolling AFB

DC 20332-0001

Dear Jon,

As a result of several conversations including one with Richard Orr
of Atlantic Aerospace I have become concerned with the efforts of
Ana Tsao, Lou Auslander and others propagandizing for the Auslander-
Johnson FFT algorithm to exagerate their efforts at the expense of
nine and those of my students and collaborators. I am simply
interested in protecting the priority of these efforts and in no

way commenting on the Auslander-Johnson efforts as they involve

the integrity and influence peddling of DARPA contracts over which

I have no control.

Inclosed are two papers: One published by my group in 1991 and the
second recently submitted by Auslander et al in 1996 which proclaims
the Auslander-Johnson FFT supported by DARPA. Both describe the
exact same divide-and-conguer algorithm for finite abelian groups.
The relevant pages highlighted in yellow are pages 25-26 in my work

and pages 7 and 8 in Auslander’s work. Note the Auslander work is

equivalent to his previous efforts involving induced representations
as stated on page 3. Significant extensions of this approach have
been completely described in my second Springer book and in a seconad
paper also enclosed relating the abelian group FFT to affine group
actions.

These works have been submitted along with implementations to both
AFOSR and DARPA from 1989, and have been mailed and hand delivered

to both Auslander and Tsao. In addition, tensor product construction
for the FFT matrix multiplication and the DCT along with
implementations and automatic code generation have been carried out
in 1989 by two of my students John Granata and Martin Rofheart

who ‘currently run their own businesses in DC aera.

Note also my paper is a tutorial survey which only claims to
mathematically organize the works of others which makes it even
more ironic that the new Auslander-Johnson FFT algorithm can be
thought of as new five years after publication of the survey.

IﬂTCQUALIﬂ!HﬂEEUHM)S
Sincerely,

W qb-guvv\u\ru

S 20000428 048




12:26 ' 21256172590 P.0Z

APR-17-2000
EPORT DO NTATION PAGE
| REPO OCUME AFRL-SR-BL-TR-00-
Public reporting burden for thu solinctian of informMation 1 eztimated to average 1 Aour ey respONsE, if :« go:::;
gethening and Maintaining the data needes, ang <ornplming and.:'v'?:;na *e.f.ol.l:cuen of -nfolmatlor‘! s
ESlion Snermanr g sgeon oy e B sy o Henron sscienen 0157 e |
1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES Cuvencw - - -
: Frra | Technical Repold

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

\ . J— . ]

Wei ) Teansfom and EYco’ Cor!echnj Codes F4q630

- 94~ -oon

6. AUTHOK(S)

Louis Aushnd@(

{7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

Gradaote Sdaoo/d,ng b{m\IUS“f"j lee//am7
3es Ffrn Quipue
M 1 W 00 1o+ 309

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10, iﬁ%ﬁi‘?"&'&'? ég'or?b?;:‘s
tment of The Rix Force

Mo Focce Offie of 94’@1"60 Researsch |

g1 N - Rardo[ph ., Aclinghn VA 22203-1977

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT . 12b. DISTRIBUTION CODE

Approved for nublic release,
distribution unlimited

13. ABSTRACT (Maximum 200 words)

A connection between the Weil transform and error-correcting codes is
developed. This contrasts with existing efforts that are based on the Fourier .
transform and have led to new classes of codes well tailored for burst-error
correction. A number of analytical questions must be treated in extending these
analogies to the Weil case. In particular, bounds on the mean-square norm of
the discrepancy between the FFT (Fast Fourier Transform) and the continuous
transform should be established. This was done be consideration of a Riemann
sum. The application to information theory then resuits by applying the Landau-
Slepian "approximate dimension theorems” for functions that are only
approximately band-limited. Allegations that certain results on “Fourier
Transforms for Abelian Groups” which we announced as accomplishments on
this grant and a related Darpa grant effort, were actually part of a well-known
body of tutorial material are examined and refuted.

=

14, SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE COOE

—— A — i =T E T S S SR Ty T
17. SECURITY CLASSIFICATION [18. SECURITY CLASSIFICATION | 18. SETURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

. NSN 7540.01.280-5%00 Standard Form .298_~(.R.e;v 2-89)

TATA M AA




. . et e e e e - e
B DA s et in e are T e A Re e DA s b . Y Y T 2 oS A e A7 LTINS L WA

Review of "Radar Waveform Design and Clutter Suppression” by L. Auslander

Dr. Auslander proposes to design radar waveforms to suppress clutter in SAR images. However, he
does not explain why he wants to do this! It is not clear whether he really wants to suppress clutter or
sidelobes. If sidelobe suppression is the goal, then the SVA algorithm in Reference [1] is the best
method (as far as I know), but it is not mentioned in Dr. Auslander's proposal.

The first two sentences of the section titled "Scientific Proposal” on Page 1 state: "Classical clutter
suppression at the radar waveform level — say for Doppler — has been achieved by studying the
spectum of the clutter and designing waveforms whose Fourier ransforms have little energy in the
support of the spectrum of the clutter. Classical clutter suppression at the level of SAR images has
been based on statistical studies of the clutter and the design of pre-whitening filters.”

“Cicuer” is clearly undesirable in MTI radar applicatdons. However, in SAR applicatons the clutter is
the signal! Saying that you want to suppress the clutter in SAR images is equivalent to saying that
you want to suppress the signal of interest, unless you carefully explain what you mean by clutter
suppression. Unfortunately, I could not find this explanation in the proposal.”

Cluuer suppression is usually considered to be a disadvanrage, not an advantage, in SAR super-
resolution zlgorithms. These algorithms achieve resolutions better than (1/Bandwidth) at the expense
of emphasizing isolated point-like discretes over the more complicated clutter. The details of diffuse
clutter feztures, such as vehicle tracks, are very important in SAR reconnaissance applications.
Algonthms that suppress these clutter features are usually considered to be bad, not good!

There may be some benefits to suppressing diffuse clutter in imagery that will be analyzed by an
automatic target recognition (ATR) algorithm, but this application is not mentioned in Dr. Auslander's
proposal. (If Dr. Auslander is indeed trying to suppress diffuse clutter for an ATR algorithm, then he
would need to be specific about which ATR algorithm he plans to use.)

Dr. Auslander's mathematics may lead 10 exotic waveforms that practical hardware cannot generate or
propagate. Very high-resolution SAR images requiring very wideband waveforms are usually
obtained with linear FM waveforms because it is difficult to design receiver/exciters and high-gain

directive antennas with other types of very wideband waveforms. This practical issue is not
addressed in the proposal. '

The example provided in the proposal is based on ECG data for heart beats. Radar examples would
have been much more appropriate.

In summary, my impression of the proposal is very negative.
Reference

(11 H.C. Stankwitz, R.J. Daillaire, J.R. Fienup, "Nonlinear Apodization for Sidelobe Control in
SAR Imagery,"” IEEE Transactions Aerospace and Electronic Systems, January 1995.




etailed Co ents

The general problem addressed by this Proposal, the construction of radar waveforms with
bctter.characteristics, is worthwhile and st merits research effort after all the years of
investigation given to jt. :

I'believe the "mear* of the proposed waveform design method for improved waveform design

Proposed multi-resolution analysis. First, it is not entirely clear whether wavelets will be

used or not. What will be the criteria used ip deciding whether to yse "characteristic

My chief eriticism s that the exciting detils of demonsrrating the validity and utility of the
author’s approach has bee, Oomitted, the reader being asked to take for granted that it wij]
be possible to identify and articulate the details, decide Uupon approaches to sojve the various
problems, and achieve the desired goal. As a reviewer, I applaud the goal but have beeq
disappointed to not have been given the detailed discussiop to more carefully evaluate,

A second portion of the Proposal, the Weil transform winding number as {0 new signal
Processing tool, should be detached from the multi-resolution discussion. This could form
the basis of a Séparate expanded proposal that would merit evaluation on jts owp merits.
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Abstract!— This paper presents a divide and conquer algorithm to compute
the Fourier transform of a finite Abelian group using the Fourier transform of an
arbitrary subgroup and the Fourier transform of the corresponding quotient group.
The construction uses an arbitrary choice of coset representatives for the quotient
group. Different choices of cosat representatives lead to different data flows in the
algorithm and different twiddle factors.

The derivation of the algorithm generalizes the derivation of the FF'T presented
by Cooley and Tukey. Moreover, it can be used to vbtain explicit algorithms for
multidimensional Fourier transforms. The algorithm presented in this paper gener-
alizes all of the known Cooley-Tukey type algorithms for multidimensional Fourier
transforms and provides new algorithms with alternative data flow patterns. Some
preliminary experiments suggest that in hierarchical memory computers these al-
gorithms are more efficient than the standard “row-column” approach.
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1 Introduction

In 1965, Cooley and Tukey [11] presented a divide and conquer algorithm,
called the Fast Fourier Transform (FFT), for computing the Fourier trans-
form of a sequence of n points. The FFT has a long and interesting his-
tory [10].

Cooley and Tukey considered the problem of computing

N-1
XG) =Y AW, j=01,..,N-1, W=e"/ (1)

k=0

. given a complex function A(k).

Their algorithm is obtained by viewing the functions X and A as functions
of two variables and rearranging the sumin Equation1 asa nested sum. Since
the material in this paper is closely modeled on the ideas in the paper by
Cooley and Tukey, we reproduce their derivation.

To derive the algorithm, suppose N is composite, i.e., N = ryra. Then let
the indices in (1) be expressed

j=jlrl +j0.j0=0,l.«‘--.r1- lv jl =0,l,...,l'2-' l, (2)
k=kira+koko=0,1,....72-1,k =0,1,....,r; = 1.

Then, one can write

X(jrjo) = 33 Alky ko) Witrawite, )
ko ky
Since
Wikirs = jyiokira @
the inner sum, over k,, depends only on jo and ko and can be defined as a
new array,
Ai(io ko) = Y Alky, k)Wieha. 5)

ky
The new result can then be written

X(jrdo) = 3 Arlo, ke)Wirri¥iodte, ©)

ko

Alternative algorithms have been presented when r, and r; are relatively
prime [13]. The approach of Cooley and Tukey has been used to obtain mul-
tidimensional Fourier Transform Algorithms. The “vector radix” algorithm

9




was presented in [15, 23], and a more general multidimensional algonthm
was independently presented in [4] and [22].

Recently the authors have generalized the Cooley-Tukey algorithm to
apply to an arbitrary finite Abelian group [1}. This algorithm computes the
Fourier Transform of a finite Abelian group using the Fourier transform of an
arbitrary subgroup and the Fourier transform of the quotient group obtained .
by moding out by the chosen subgroup. The construction uses an arbitrary
choice of coset representatives for the quotient group. Different choices of
coset representatives lead to different data flow in the algorithm and different
twiddle factors. These results generalize all of the known Cooley-Tukey type
algorithms, including those mentioned above, and provides new algerithms
with alternative data flow.

The results in [1] were obtained using the theory of induced representa-
“tions; similar in spirit to recent work on algorithms for the computatior of
Fourier transforms of non-Abelian groups [8, 9, 12, 24]. In this paper an al- -
ternative combinatorial proof is presented. This proof generalizes the original
proof used by Cooley and Tukey. The benefit of this approach is that it pro-
vides an explicit formula that can be used for constructing multidimensional
Fourier Transform algorithms. A meta-algorithm is provided that, given a
presentation for an Abelian group, a presentation for a subgroup, a set of
coset representatives for the quotient group, and a set of coset representatives
for a related quotient group in the dual group, constructs a matrix factor-
jzation of the Fourier transform of A. This matrix factorization provides an
algorithm for computing the given multidimensional Fourier transform.

In Section 2 the Fourier transform of a finite Abelian group is defined. A
proof of the main result is presented in Section 3. Section 4 shows how to
apply the results about Abelian groups to multidimensional Fourier trans-
forms, and Section 5 presents some concrete examples. In particular, it is
shown how to obtain the existing algorithms as special cases of the gen-
eral algorithm. In addition a class of examples are presented that could not
have been computed with existing algorithms. Finally, Section 6 discusses
the consequences of the results in this paper to the implementation of high
performance multi-dimensional Fourier transform algorithms.




9  The Fourier Transform of a Finite Abelian
Group

Let A be a finite Abelian group whose order is denoted by |A] (the group
operation will be denoted by +). The set of complex valued functions on A
with inner product ,

|4l

form an inner product spacc denoted by L*(A).
A non-zero function x € L*(A) such that

Y- f(a)g(a)

e€EA

(fr9) =

x(a1 + a3) = x(a1)x(a;) for ay,a; € A,

is cailed a character. If a € A is of order n, then x(a)® = 1, and therefore
Ix(a)] =1 and x(—a) = x(a).

If x, and x; are characters then we can define (x1 + x2)(a) = x1(a)x2(a).
Under this operation the set of characters form a group, called the dual or
character group, which we will denote by A. 1t is well known that A is
isomorphic to A (see Section 4 and [14]).

Suppose that x # 1, then there exists a; € A such that x{(a1) # 1. Since,:

Y x(a) = Y x(a+a) = x(a1) 3 x(a),
a€A a€A a€A

(1-x(a1)) Taea X(a) = 0, 2nd since x(a;) # 1, Laea x(a) = 0. The following
property easily follows from this calculation.

Lemima 2.1 Let x1.x2 € A.

) _ 1 if x1=x2
(XlsX?)—{O ile#XZ

This lemma implies that A is an orthonormal basis for L2(A). Hence, an
arbitrary function, f € L?(A) can be written uniquely as

flz) = & f)x(=), where f(x) = (f,x)- (7
© x€A
This is the Fourier series expansion of the function f. The coefficients in

this expansion are called the Fourier coefficients and are obtained from the
Fourier transform of f.




Definition 2.1 (Fourier Transform) )
The Fourier transform of A, F(A) : L}(A) — L*(A) is defined by

FIAN) = Fx) = |714'| > Jla)x@ = ()

3 A Divide and Conquer Algorithm

Let (,): A x A — C be the bilinear pairing of 4 with its dual A defined by
(a,d) = a(a).

Let B < A be a subgroup of A. Corresponding to B we can form a subgroup,
B*, of A equal to {a € Al (b,a) = 1, for b € B}, the characters that are
perpendicular, with respect to (,), to the subgroup B. '

Since @ € B* is equal to 1 on B, we can identify it with a character on
C = A/B, by setting @(a+ B) = a(a). Likewise given a character, ¢, of A/ B,
we can obtain a character in B*, by composing the projection A — A/B
with é. Therefore B* is isomorphic to C. )

A character, a € /i, restricted to the elements of B is a character of B
denoted by &|g. The restriction map, @ + a|g is a homomorphism from
A — B with kernel BY. Since |B*| = |4/B| and |A| = |4], |A/B*| = |B|
and the restriction map is onto; therefore

A/B* = B.

As a result of this isomorphism there are |B*| = |C| characters in A that
restrict to each character in B. Moreover, these are the characters in the

cosets of A/B*.

Let C = A/Band B=A/B*. Let£:C — Aand#: B — Abe a choices
of coset representatives. The following theorem shows how to compute F (A)
using |C| copies of F(B), |B| copies of F(C) and | A] complex multiplications.
The complex multiplications depend on the choices of coset representatives
£ and 7.

To simplify the notation used in the following theorem and proof we will
remove the normalization constant 1/]A] and conjugation in the definition of
the Fourier transform and compute

F(A)(@) = }_ f(a){e,@).

a€Ad

b)




There is no harm in doing this since the constants and conjugation can easily
be reinserted.

Theorem 3.1 Let B< A, C = A/B,C = B*, B A/C £:C— Abea
choice of coset representatives for A/B, and 1) : B — A be a choice of coset
representatives for A/C. Then

f(@) =Y (.8 ((f(c),ﬁ(i:)) 2 feter (B)(b, 5)) -
ceC beR
where feo(b) = f(b+£(c)) andd € A=ii(b) +¢ withbe B and € C.

Proof. Using the coset decompositions of A/B and A/C the indexing sets
can be written as A = B x §(C) and A=C x#(B), and

f@) = ¥ fla){a,a) (8)
a€A
= T fuab)(b+Ee),é + (b)) 9)
ceC beB .

Using the bilinearity of <,> this is equal to

3 3 Fea(b) (5,) (60,8 (6,A(B)) (ECe), (), (10)

ceC beB

Since é € B*, < b,é >=1 and Equation 10 is equal to

S 3 Fea(BEC), )b A (E(e), A(D)- (11)

ceC beB

Furthermore, since (£(c),c) and (£(c), (b b)) do not depend on the inner sum-
mation index b, this is equal to the nested sum

ceC beB

2 (€(0).8) ((f(c),ﬁ(B» > fe(c,(b)(b,ﬁ@») : (12)
" Finally, since (£(c).¢) and (5, 7(8)) are independent of the choice of coset
representatives £(c) and 1]( ) this completes the proof. I

This theorem is the basis for a divide and conquer algorithm for comput-
ing F(A), which we now describe.




1. Compute f{(c) = F(B)fe() for c € C.
2. Compute g, for b e B, where 9apy(c) = ({(c),ﬁ(iz))fg(c)(ia) forceC.

3. Compute g = F(C)gy) for be B.

Observe that ff(c) € L3}(B), 94y € L¥C), 953 € L*(C), and by Theorem 3.1
956 = f(#(b) + &). Since any @ can be written as #(b) + & for some be B
and & € C, all of the values of the function f=F (A)f have been computed.

To implement this algorithm the elements of A and A must be ordered.
Ordering the elements of A and A fixes the representations of the functions f
and f, introducing data permuiations or index computations when accessing
the values of f() and g;), and storing the values of 7).

If the elements of A are ordered then f can be viewed as a vector whose
indices are the elements of A. Step (1) of the above algorithm first creates
|C| functions of B denoted by fg(). If the elements of B are ordered then
the functions fg() can be represented by subvectors obtained from f. The
subvectors fe(¢) can be ordered using the order of the coset representatives
£(C). Therefore the first part of Step (1) corresponds to a permutation of
the vector f. This permutation is determined by the order of the elements
of A, the subgroup B, and the coset representatives €(C). It corresponds to
permuting the indexing set A to {(C) x B.

After the vectors fg() are gathered, .iE(c) = F(B)fe() is computed for
each ¢ € C. Step (2) then creates |B| = |B| functions of C. For each be B
the function g, ; defines a function of C. If the functions f¢() are stored as
vectors the computation of g, requires a stride permutation followed by a
diagonal multiplication (called the “twiddle factor”). The stride permutation
gathers the elements of each vector ff(c) indexed by b. The twiddle factor
multiplies fe(e)(b) by (€(c),7(b))-

Finally, Step (3) performs |B| computations of the Fourier transform on
C. ;4 = F(C)gs)- As mentioned above, the resulting functions combine

_to give all of the values of f; however, the values are not necessarily in the
order specified for A. Instead, the functions are indexed by 7(B) x C, and a
permutation similar to the one in Step (1) is required so that the resulting
function is ordered corresponding to the order of A

-]
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Finite Fourier Transform Approximation and
Riemann Sum Approximation for Functions that

Decay in Time and Frequency

J. Litwin

May 1995

Abstract

For functions with finite time and frequency energy moments, we find
upper bounds for the error of finite Fourier transform approximation to the
Fourier transform. The error can be measured as the maximum error over
all of the points of the FFT, or using a discrete L? distance, or using a
continuous L? distance. '

Using the machinery developed, we also find an upper bound for the
error of approximating the L2 riorm of a function by a Riemann sum. From
this result, an upper bound is also derived for the error of approximating
the L? inner product, as well as the error of approximating the integral of
an L! function, by a Riemann sum.

As an application of the L? norm approximation theorem, we prove
an analog of the Landau-Pollak-Slepian approximate dimension theorems
for a certain set of functions that is approximately time-and-bandlimited
for large duration N and bandwidth M. This set can be approximately
parameterized with NM parameters, with the error approaching zero as
NM approaches infinity.
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.0 Introduction

One of the most important operations in the signal processing industry is taking
the Fourier transform of a function. With digital signal processing, the finite
Fourier transform (FFT) is used instead. A question of great practical importance
immediately arises: How good an approximation is the FFT?

The Fourier transform at a particular frequency is nothing more than an in-
tegral. And, the FFT at a particular frequency is a special case of numerical
integration using Riemann sum approximation. It would not be surprising if the
theory of Riemann sum approximation allows us to derive an error bound for the
FFT. In fact, we will do just the opposite. We will use an error bound for the
FFT to derive an error bound for more general Riemann sum approximation.

To obtain any results, it is clear that the class of functions must be restricted
somehow. For example, if there are no restrictions on the oscillations, knowing
the function at a finite set of points tells us nothing about the function anywhere
else. We will consider functions that decay sufficiently fast in time and frequency
(in the sense that will be described below). For this class of functions, we will
derive an error bound for FFT approximation to the Fourier transform and an
error bound for more general Riemann approximation.

0.1 Background

Previous Results

All previous error bounds that I am aware of come out of the observation that
we can rearrange the terms of the Poisson summation formula and the formula
becomes the desired error bound. It is not clear who first discovered this. See
Butzer-Stens [BS] and Briggs-Henson [BH, Chapter 6].

Assume that f satisfies whatever conditions are necessary so that the Pois-
. son summation formula is valid. Consider the case of approximating the Fourier
transform, denoted f(7), by the FFT at v = 0. That i is, we will approximate

1 NM/i=-1

for=[10a vy 5 X fk/m)

k=-NM/2

N and M will be assumed throughout this introduction to be even positive num-
bers. N is the timelength of the approximation and M is the sampling rate.

Note 1: By focusing on what seems to be just the special case of FFT approxi-

4
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mation where 4 = 0, we are actually considering the general case of Riemann sum
approximation. '

Note 2: For the case of 4 # 0, we can apply the following method to fe

In fact, by the same method, we can obtain an upper bound for the maximum
error over all the points upon which the FFT is defined. (See Section 5.1.)

—2rit~,

One form of the Poisson summation formu]a is
Y fkM) = — Z f(k/M).
kez kez

A rearrangement of the terms yields the following error bound:

iNM-1 )
f(O)——,%{— Y. flk/M)| < -;7( X o+ X (kM) + +[5 f(ch)’.
k=-LNM k<=LINM  E>INM-1 k#0 .

The error bound can be interpreted as follows. Discretization results in two
types of error. Truncation error comes from the fact that the FFT only utilizes

function values over a finite duration. Aliasing error comes from the fact that

the FFT is limited to a finite sampling rate. The first term of the error bound is
primarily caused by the truncation error. The second term is primarily caused by
the aliasing error.

The form of the error bound provides practical information about how the
error can be reduced. Let’s say the first term of the error bound is much greater
than the second. Then increasing N will be much more effcctive in reducing the
error than increasing M.

At this point, we can impose various conditions on f to obtain many different
theorems. One possibility is as follows. Let j be an integer greater than 1. Let’s
assume that fU~1) js absolutely continuous (which implies that fU} exists almost
everywhere) and that f(*) € L'(R) for all ¥ < ;.

Then, using integration by parts j times,
s , . 1 .. , .
- =ity Qg (__ (4 —2xity
) / f(t)e dt (21ri7y j fY(t)e dt.

We will show in the next paragraph that the boundary terms from all of the
integrations by parts are zero.

Consider the following two typical terms involved in one of the the above j
integrations by parts:

B
k (%) (4)p—27it k41 (k41) 4}, —2mity
A.B ee(21rry) / ANOL dt and hm (21rz7) /.Af (t)e dt.

3
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Because of our L! assumption, these limits exist for any fixed y and all 0 £ k £
j — 1. Therefore, the boundary term from each of the integrations by parts must -
also approach a limit as A, B approaches infinity. The boundary term is

)k+1 f(k)(B) —2xiBy + ( )k-Hf(k)( A)e‘hnA-r)

A.lérfw( (211‘1 2ney

Because of the exponential factors, the only way that this limit can exist is if
limyj—e f(*)(t) = 0. Therefore, the boundary term also equals zero.

From the expression for f in terms of f(7), we see that f is O(|9]~7). Now, let's
estimate the sccond error term in the rearrangement of the Poisson summation
formula. The decay of f tells us that the second error term is bounded by a
constant times Y (kM)~, which is O(M~?).

We can also make the same assumptions for f that we did for f. Assume that
fU-1 is absolutely continuous and that f% € LY(R) for all k < j. By similar
reasoning, we see that f is O(|t|~7). Therefore, the first error term is bounded by
a constant times INp t~Jdt, which is O(N-(-1)),

L? Approach

The prior results show that if the derivatives of f and f are absolutely continuous
and in L!'(R), then we can obtain error bounds for both FFT approximation and
Riemann sum approximation. What happens if we replace the hypothesis that
the derivatives are in L with the hypothesis that the derivatives are in L?? That
is the question that we will address.

Note that we are weakening the hypothesis (on the first j — 1 derivatives).
We saw above that if f(¥) is absolutely continuous and f(), f(*+1) ¢ L! then
limjgjmeo f*)(t) = 0. This implies that |fF)(t)[? < | f%¥)(¢)| for sufficiently large ¢
which implies that f() € L2. Since our hypothesis is weaker, we should expect
weaker results.

There is a simpler way to describe the conditions in our hypothesis. The
assumption that fU-1) is absolutely continuous and that f*) ¢ L*(R) for all
k < j is equivalent to the assumption that the ;** frequency moment is finite.
This mormnent is defined by

D} = [ 1|ffdr.
This result is essentially the content of Lemmas 1.3 and 1.4.

The dual of this result is also true. The assumption that fi-1) is absolutely
continuous and that f(*) ¢ L*(R) for all k < j is equivalent to the assumption

6
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that the j** time moment is finite. This moment is defined by
Cl= / t%|f|2dt.

This equivalence may make our results more practical than the results obtained
with the L! hypothesis. With the L! hypothesis, the error bound depends on the
L! norms of the j** derivatives. This information is usually difficult to calculate.
Our approach uses energy moments, which may be easier to calculate.

0.2 Notation and Definitions

The version of the Fourier transform that we use is
-~ A -
— I 4 2 -2xity
f(r) = Jim (in L) f_ ) f(t)e™ e,

The limit refers to convergence in L3(R).

||£l] denotes the norm of f in L?(R). The L’([——N/Z N/2]) norm is denoted -
by [fll-nranpa

The following norm is described in more detail in Section 2.2. Let 3 Zx be the
set of points {k/M}i._1np...4NM-1- This notation is supposed to remind the
reader of the set of points {k/M} modulo N. The L? norm for functions defined
on 3y Zx is defined to be

NM-1

bpem =37 & EMP.

k==-iNM

wpe

Our version of the FFT is an operator from L*(%Zy) onto L(%Zxs) defined

by
' ) , M- ‘ i 1
fin/N) =+ Yo f(k/M)eT3NNM g = L NM,...,=NM - 1.
b= INM 2 2

The FFT of f will be denoted by f.

Note: The nonstandard scaling in the definitions of the FFT and the discrete
norm are used to make the FFT is a unitary operator. With these definitions,

Ifllpev.an) = lIf Loy

7
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(See Section 2.2 for proof.)

The FFT can easily be extended to all of R so that it is a periodic function
with period M. The eztended FFT, denoted by f2, is

FNM-1

P =g X Skt
k=-1NM

Note: The extended FFT is also a unitary operator. By Parseval's equality
for periodic functions,

£ li=ps20079 = || FllDOany-

The periodization operator Py is defined by

(Pvf)t) =3 f(t+kN), feL*R)and decays sufficiently fast.
ke )

See Section 2.2 for a more precise definition.
Z means the the complex conjugate of z.

Lz] means the greatest integer less than or equal to z.

0.3 Executive Summary

FFT Approximation

From now on, throughout this paper, all functions are assumed to be in L?*(R),
unless stated otherwise. We also assume that f and f are continuous. (In fact,
most of our results depend on the existence of time and frequency energy moments,
which is a stronger condition than the continuity of f and f.)

Because of our assumptions, both the Fourier transform and the FFT exist.
We would like to measure the error in approximating the Fourier transform by
the FFT.

The error in the FFT approximation can be measured in many ways. One way
is to measure the maximum difference over all of the points upon which the FFT
is defined.

Since f is assumed continuous, we can evaluate f at —;,—ZM. Therefore, we can
also measure the error by calculating the discrete L? distance, - f How -

8




APR-14-2008 15:3@ CUNY/GRADURTE CENTER 212 6422607 P.14s5S

We can also measure the error by calculating the continuous L? distance, |[f® —
Fli-m/2,m/2)- '
With the L' hypothesis, a key step in deriving an error bound was to show

that f and f decay at a sufficiently fast rate. We obtain a similar result easily in
Lemma 1.5. If C; and D, are finite, then

£l < A,

where A is a constant. Unfortunately, this lemma doesn’t give us any information
about what the constant is.

However, a different approach yields an even stronger result. Define the dis-
crete tail energy to be

Be=w X IO
M [H>INM

In Lemma 2.3, we show that if C; and D, are finite, then the discrete tail energy
is O(N~7), and we also have an upper bound for the constant involved.

Notice that this implies that f2(t) is O([t|~?). At this point, we could plug this
information into the rearrangement of the Poisson summation formula as we did
with the L' hypothesis to obtain a bound for the maximum error. This approach
results in the first FFT approximation theorem (Theorem 5.1). |

By proceding somewhat differently, we can obtain bounds for the discrete and
continuous L? error. The following briefly describes how we derive an upper bound
for the discrete L? error.

Since the discrete energy in the tail is bounded, one would expect that we
can find an upper bound for the discrete L? distance between a function and its
periodization. In fact, we prove the following periodization comparison lemma
(Lemma 2.8). If C; and D, are finite, where j > 2, then

UPnS = fllopwny S KN/,
where K depends only on C; and D; (and inversely on N and M ).

This lemma allows us to replace f and f in the definition of the discrete L?
distance between the FFT and the Fourier transform with periodizations (using
the triangle inequality). Of course, replacing f with (Pyf)~ introduces an error
of KyN=/? and replacing f with Py f introduces an error of K,M-il3,

Now we must calculate ||(Pvf)~ = Pi, f l[p(~.a). For this, we use the general-
ized Poisson summation formula (Theorem 4.1). The generalized Poisson summa-
tion formula says that under the hypotheses of the Poisson summation formula,

9
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(Pnf)~ is equal to the sampled Py f. Therefore, in our case, where the hypothe-
- ses are met because of energy moment conditions, the norm of the difference is

zero.

We have just derived the desired upper bound for the discrete L? error (The-
orem 5.2). If C; and Dj are finite, where j > 2, then

f = fllowan < KiN72 4 Ko M—312,
K, depends only on C; and D, (a.nti inversely on N and M). K, depends only on
Dj; and C; (and inversely on N and M).

We also obtain an upper bound for the continuous L? error (Theorem 5.3, see
Section 5.3 for the proof). If C; and D; are finite, where j > 2, then

1F* = Flli=mjzpzy S KaN=2 4 KoM,

K, depends only on C; and D; (and inversely on N and M). K; depends only
on D;. Notice that the second error term is better than the corresponding term
in the previous result.

Riemann Sum Approximation

Since we are focusing on the L? norm error, our approach does not automatically
provide an error bound for more general Riemann sum approximation. However,
from the third FFT approximation theorem, we derive the L? norm approximation
theorem (Theorem 6.1). Then, we bootstrap our way to derive error bounds for
more general Riemann sum approximation.

From the third FFT approximation theorem and the triangle inequality, we
have

l WA= aas2.0a72) — ”f“[—M/a,M/z]' S KN L KoM,

. As mentioned above, the first term of this inequality, || f!]|i_ar/2.m/9), is equal
to || f|lp(m,n) by Parseval’s equality for periodic functions.

The second term, ”f [lt-a172,M/2), can be replaced by || f [| = ||f|| at the expense
of increasing K;. This is a consequence of Chebyshev’s inequality.

Making these two substitutions proves the L2 norm approximation theorem.
If C; and D; are finite, where j > 2, then

| 117 = 1A llpem| < KiN-32 + Ky M-,
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